National Council of Teachers of Mathematics (NCTM)

SPA Standards:

Standard 1. Knowledge of Problem Solving. Candidates know, understand and apply the process of mathematical problem solving.

1.1 Apply and adapt a variety of appropriate strategies to solve problems.

1.2 Solve problems that arise in mathematics and those involving mathematics in other contexts.

1.3 Build new mathematical knowledge through problem solving.

1.4 Monitor and reflect on the process of mathematical problem solving.


2.1 Recognize reasoning and proof as fundamentals aspects of mathematics.

2.2 Make and investigate mathematical conjectures.

2.3 Develop and evaluate mathematical arguments and proofs.

2.4 Select and use various types of reasoning and methods of proof.

Standard 3. Knowledge of Mathematical Communication. Candidates communicate their mathematical thinking orally and in writing to peers, faculty and others.

3.1 Communicate their mathematical thinking coherently and clearly to peers, faculty, and others.

3.2 Use the language of mathematics to express ideas precisely.

3.3 Organize mathematical thinking through communication.

3.4 Analyze and evaluate the mathematical thinking and strategies of others.

Standard 4. Knowledge of Mathematical Connections. Candidates recognize, use, and make connections between and among mathematical ideas and in contexts outside mathematics to build mathematical understanding.

4.1 Recognize and use connections among mathematical ideas.

4.2 Recognize and apply mathematics in contexts outside of mathematics.
4.3 Demonstrate how mathematical ideas interconnect and build on one another to produce a coherent whole.

Standard 5. Knowledge of Mathematical Representation. Candidates use varied representations of mathematical ideas to support and deepen students’ mathematical understanding.

5.1 Use representations to model and interpret physical, social, and mathematical phenomena.

5.2 Create and use representations to organize, record, and communicate mathematical ideas.

5.3 Select, apply, and translate among mathematical representations to solve problems.


6.1 Use knowledge of mathematics to select and use appropriate technological tools, such as but not limited to, spreadsheets, dynamic graphing tools, computer algebra systems, dynamic statistical packages, graphing calculators, data-collection devices, and presentation software.


7.1 Attention to equity.

7.2 Use of stimulating curricula.

7.3 Effective teaching.

7.4 Commitment to learning with understanding.

7.5 Use of various assessments.

7.6 Use of various teaching tools including technology.


8.1 Select, use, and determine suitability of the wide variety of available mathematics curricula and teaching materials for all students, including those with special needs such as the gifted, challenged and speakers of other languages.
8.2 Select and use appropriate concrete materials for learning mathematics.

8.3 Use multiple strategies, including listening to and understanding the ways students think about mathematics, to assess students’ mathematical knowledge.

8.4 Plan lessons, units and courses that address appropriate learning goals, including those that address local, state, and national mathematics standards and legislative mandates.

8.5 Participate in professional mathematics organizations and uses their print and on-line resources.

8.6 Demonstrate knowledge of research results in the teaching and learning of mathematics.

8.7 Use knowledge of different types of instructional strategies in planning mathematics lessons.

8.8 Demonstrate the ability to lead classes in mathematical problem solving and in developing in-depth conceptual understanding, and help students develop and test generalizations.

8.9 Develop lessons that use technology’s potential for building understanding of mathematical concepts and developing important mathematical ideas.

Standard 9. Knowledge of Number and Operations. Candidates demonstrate computational proficiency, including a conceptual understanding of numbers, ways of representing number, relationships among number and number systems, and meanings of operations.

9.1 Analyze and explain the mathematics that underlies the procedures used for operations involving integers, rational, real and complex numbers.

9.2 Use properties involving number and operations, mental computation, and computational estimation.

9.3 Provide equivalent representations of fractions, decimals, and percents.

9.4 Create, solve, and apply proportions.

9.5 Apply the fundamental ideas of number theory.

9.6 Makes sense of large and small number and number systems.

9.7 Compare and contrast properties of numbers and number systems.

9.8 Represent, use and apply complex numbers.
9.9 Recognize matrices and vectors as systems that have some of the properties of the real number system.

9.10 Demonstrate knowledge of the historical development of number and number systems including contributions from diverse cultures.


10.1 Analyze patterns, relations, and functions of one and two variables.

10.2 Apply fundamental ideas of linear algebra.

10.3 Apply the major concepts of abstract algebra to justify algebraic operations and formally analyze algebraic structures.

10.4 Use mathematical models to represent and understand quantitative relationships.

10.5 Use technological tools to explore algebraic ideas and representations of information and in solving problems.

10.6 Demonstrate knowledge of the historical development of algebra including contributions from diverse cultures.


11.1 Demonstrate knowledge of core concepts and principles of Euclidean and non-Euclidean geometry in two- and three-dimensions from both formal and informal perspectives.

11.2 Exhibit knowledge of the role of axiomatic systems and proof in geometry.

11.3 Analyze characteristics and relationships of geometric shapes and structures.

11.4 Build and manipulate representations of two- and three-dimensional objects and visual objects from different perspectives.

11.5 Specify locations and describe spatial relationships using coordinate geometry, vectors and other representational systems.

11.6 Apply transformation and use symmetry, similarity, and congruence to analyze mathematical situations.
11.7 Use concrete models, drawings, and dynamic geometric software to explore geometric ideas and their applications in real-world contexts.

11.8 Demonstrate knowledge of the historical development of Euclidean and non-Euclidean geometries including contributions from diverse cultures.


12.1 Demonstrate a conceptual understanding of and procedural facility with basic calculus concepts.

12.2 Apply concepts of function, geometry, and trigonometry in solving problems involving calculus.

12.3 Use the concepts of calculus and mathematical modeling to represent and solve problems taken from real-world context.

12.4 Use technological tools to explore and represent fundamental concepts of calculus.

12.5 Demonstrate knowledge of the historical development of calculus including contributions from diverse cultures.


13.1 Demonstrate knowledge of basic elements of discrete mathematics such as graph theory, recurrence relations, finite difference approaches, linear programming, and combinatorics.

13.2 Apply the fundamental ideas of discrete mathematics in the formulation and solution of problems arising from real-world situations.

13.3 Use technological tools to solve problems involving the use of discrete structures and application of algorithms.

13.4 Demonstrate knowledge of the historical development of discrete mathematics including contributions from diverse cultures.

14.1 Design investigations, collect data, and use a variety of ways to display the data and interpret data representations that may include bivariate data, conditional probability and geometric probability.

14.2 Use appropriate methods such as random sampling or random assignment of treatments to estimate population characteristics, test conjectured relationships among variables, and analyze data.

14.3 Use appropriate statistical methods and technological tools to describe shape and analyze spread and center.

14.4 Use statistical inference to draw conclusions from data.

14.5 Identify misuses of statistics and invalid conclusions from probability

14.6 Draw conclusions involving uncertainty by using hands-on and computer-based simulation for estimating probabilities and gathering data to make inferences and conclusions.

14.7 Determine and interpret confidence intervals.

14.8 Demonstrates knowledge of the historical development of probability and statistics including contributions from diverse cultures.


15.1 Recognize the common representations and uses of measurement and choose tools and units for measuring.

15.2 Apply appropriate techniques, tools, and formulas to determine measurements and their application in a variety of contexts.

15.3 Complete error analysis through determining the reliability of the numbers obtained from measures.

15.4 Demonstrate knowledge of the historical development of measurement and measurement systems including contributions from diverse cultures.


16.1 Engage in a sequence of planned opportunities prior to student teaching that includes observing and participating in both middle and secondary mathematics classrooms under the supervision of experienced and highly qualified teachers.
16.2 Experience full-time student teaching in secondary mathematics that is supervised by a highly qualified teacher and a university or college supervisor with secondary mathematics teaching experience.

16.3 Demonstrate the ability to increase students’ knowledge of mathematics.